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for the condition Q1 = 0. The experiments further 
show that in the stationary state eq 4 is obeyed by both 
alkali ion species if the mean activities of the salts are 
substitutes for the single ion activities. The ratio 
(a±"KC1/a±"LiC1)stat which will be attained in the sta­
tionary state can be calculated from the known elec­
trolyte concentrations in the left cell compartment by 
eq 8. The experimentally determined and the predicted 

The probability of energy transfer between translation 
and vibration has been discussed theoretically by a 

number of authors on both classical and quantum 
mechanical grounds.2-4 Although various forms of the 
interaction U(r), where r is the distance between centers 
of mass of the collision partners, were assumed in the 
calculation, only for a few interaction potentials ex­
plicit forms of the probability have been obtained. 
The probability P(E) that the oscillator will undergo 
the transition i -*• j because of the collision with the 
incident particle may be calculated by the method of 
distorted waves or by the method of perturbed sta­
tionary states in quantum mechanical treatments.2,5 

In either case, the probability is given by the following 
expression 

P(E) = KWE(E + t[l'KMEME + A,,) d,]' 

(1) 

where £w is the matrix element of the displacement of 
the oscillator from its equilibrium position taken be­
tween the unperturbed initial and final states of the 
oscillator, A (>0) is the magnitude of the change in the 
oscillator's energy due to the transition, /x is the reduced 
mass of the collision partners, F(r) is the perturbing 
force of the oscillator, and for any positive energy E 
the function (Ri(E,r) is the well-behaved solution of the 
radial wave equation 

^ F + %E - U(rMt(E,r) = 0 
(1) (a) G. Wentzel, H. A. Kramers, and L. Brillouin. (b)This work 

was carried out under Grant AFOSR-68-1354 from the U. S. Air Force 
Office of Scientific Research. 

(2) N. F. Mott and H. S. W. Massey, "The Theory of Atomic Col­
lisions," 3rd ed, Clarendon Press, Oxford, 1965, Chapter 13. 

(3) T. L. Cottrell and J. C. McCoubrey, "Molecular Energy Transfer 
in Gases," Butterworth & Co., Ltd., London, 1961, Chapter 6. 

(4) K. Takayanagi, Advan. Atomic MoI. Phys., 1, 149 (1965). 
(5) B. Widom, / . Chem. Phys., 27, 940 (1957). 

value agree within the limits of error of our concentra­
tion determination: (a"Kci/a"L;ci)stat experimentally, 
0.95; calculated, 0.98. The mutual influence upon 
one another of the activity coefficient of the alkali ions 
is not taken into account in the calculation. 

Acknowledgment. The author is indebted to Pro­
fessor R. Schlogl for his interest in this work and many 
helpful discussions. 

which is normalized so that as r -*• <*>, 6i^E,r) ~ cos 
(s/IjlEr/fi + 8t). If we include the centrifugal potential 
energy, then U(r) should be replaced by the effective 
potential U(r) + h\l + l\tfll\xr\ 

By recognizing the Landau principle,6'7 Widom8 

has evaluated the integral, /, in eq 1 by using the WKB 
semiclassical wave functions. However, in his work 
and also in Landau's original .work, the evaluation of the 
preexponential part of /has not been properly subjected 
to a critical examination; i.e., the preexponential 
part of P(E) has not yet been determined in the WKB 
treatment. This situation is largely due to the fact 
that a direct calculation of the perturbation integral 
with respect to the semiclassical wave functions presents 
formidable difficulties. Such difficulties arise because 
the wave functions are exponential, and the integrand 
in the integral is large whereas the integral itself is an 
exponentially small quantity. Rapp9 has also at­
tempted to evaluate the integral with the WKB wave 
functions; since he did not eliminate the difficulties 
arising from the infinities in the wave functions at the 
classical turning points, no result was obtained in his 
work. Furthermore, these works considered a one-
dimensional case which is of little practical interest. 
In the case of motion in a central field of force the 
general wave equation in spherical polar coordinates 
permits a separation of the variables. If the radial 
component of the motion is designated by (R(r)/r, 
the function (R(V) is then the solution of the radial 
equation given above. Langer10 showed the application 
of the WKB analysis to the radial equation and obtained 
the solutions which can be used to evaluate the integral. 

(6) L. Landau, Physik. Z. Sowjetunion, 1, 81 (1932); 2, 46 (1932); 
L. Landau and E. Teller, ibid., 10, 34 (1936). 

(7) L. Landau and E. M. Lifshitz, "Quantum Mechanics," Pergamon 
Press, London, 1958, Chapter 7. 

(8) B. Widom, Discussions Faraday Soc, 33, 37 (1962). 
(9) D. Rapp, LMSC Report, 6-90-61-14, 1961; J. Chem. Phys., 40, 

2813 (1964). 
(10) R. E. Langer, Phys. Rev., 51, 669 (1937). 
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Salkoff and Bauer11 reported use of this analysis in a 
numerical program for the calculation of the cross sec­
tion for vibrational excitation of hydrogen molecules 
in the ground state. 

In the present paper, we present the complete WKB 
calculation of P(E) in a simple form that can be applied 
to many physically reasonable interaction potentials 
by means of the saddle-point method which was origi­
nated by Riemann12 and developed by Debye.13 We 
use Langer's radial functions to evaluate the integral. 
To test the validity of the present treatment, application 
of the final form of P(E) is made to several cases in 
which the "exact" quantum mechanical solutions are 
known. 

The wave functions obtained by employing the WKB 
approximation in the regions on both sides of the turn­
ing point are well known.14 However, the integral I 
cannot be evaluated accurately merely by substituting 
such wave functions, because I is an exponentially small 
quantity whereas the integrand is very large so that a 
small error in the integrand will cause a serious devia­
tion in the over-all value of P(E). Langer showed10 

the following functions as the asymptotic solutions to 
the radial wave equation 

<R£E,r) ~ C1] Qir)rlh exp Qt(r) dr 

(Rj(E + A/ ) ~ c,\ Qs(r)\ ~I/2 exp. 

where 

- fTQKr) 
J Ti 

dr 

(2-1) 

(2-2) 

Qt(r) = Ix-Wl1X[U(V) - E] 

QAr) = fi-W2u.[U(r) -(E+ A)] 

cf and Cj are constants and rt and r} are the turning 
points. In the one-dimensional case Landau obtained7 

essentially identical forms regarding the coordinate as a 
complex variable and displaced the path of integration 
off the real axis into the upper half-plane. The dis­
placed path of integration does not pass through the 
turning points near which the WKB approximation is 
inapplicable. 

By substituting the functions in eq 1 we obtain 

B ( £ ) ' 
^WE(E + A) [L g(r)e\p[h~li(r)]dr (3) 

where c / = VAc1 and c / = ViIc1 

f(r) = v^r r vujr) (E + A) dr -

fVu(r) - Edr 

g(r) = E(r)/{[U(r) -(E + A)][U(r) - E]] 

(4) 

(5) 

Now, let us evaluate the asymptotic behavior of the 
integral as % -*• 0 by use of the saddle-point method, 
which is one of the most powerful techniques in asymp-

(11) M. Salkoff and E. Bauer, J. Chem. Phys., 29, 26 (1958). 
(12) B. Riemann, "Collected Works" (Gesaramelte Mathematische 

Werke), 2nd ed, H. Weber, Ed., Dover Publications, New York, N. Y., 
1953, pp 424-430. 

(13) P. Debye, Math. Ann., 67, 535 (1909). 
(14) See, for example, E. D. Kemble, "Quantum Mechanics," Dover 

Publications, New York, N. Y„ 1958, p 90. 

totics. We consider r to be a complex variable, and 
write the integral in the form 

O a 
g(r) exp[^_1f(r)]d/- (6) 

The functions g(r) and ft>) are independent of h, and 
they are analytic functions of r for all r in the simply 
connected region (R. Assume that there is a point 
r*e(R where f'(>"*) = 0 and f"(r*) ?£ 0; i.e., r* is a 
saddle point of g(r) explTi^ftV)]. 

If 5 is a number independent of fi with the condition 
0 < 5 < 7r/4, then we can find p > 0 such that there are 
two opposite sectors of the circle with center r* and 
radius p, with apertures 7r/2 — 25 

(i) 0 < \r - r*\ < p 

jarg(r - /•*) + | + I arg f"(r*)| < J - 5 

(ii) 0 < \r - r*\ < p 

| a r g ( , _ r*} _ I + 1 a r g f / / ( r *) | < E _ 5 

These sectors are symmetric with respect to the axis of 
the saddle point, in which |exp[^_ 1AV)]I < |exp[^_1-
f(r*)]|. Then, the difference between the real part of 
f(r) and f(r*) is 

re f(r) - re f(r*) < — V2|r - /-*|2|f"(/"*)|2 sin 25 + 
0(\r - r*\3) 

since in both sectors arg [-(/• - r*)2f"(r*)] < TT/2 - 25. 
Assume points «i, a2, . . ., a{, . . . in sector i and 

(Si, /32, • • •, /3j, . . . in sector ii such that the integration 
path from at to /3( through the saddle point determines 
the essential contribution of the integral. Along the 
paths from at to a4 and /34 to /3,, where / 5̂  j , re |f(r) 
— fi/*)| has an exponentially small contribution of the 
order of exp( — Tr1K) exp[^_1 re ft/*)], because the real 
part of ft/) — ft/*) now has a negative upper limit 
-K. 

The real part of h~lf(r) is monatonic along the path, 
and Laplace's method15 may be used to evaluate the 
integral asymptotically. The asymptotic expansions 
of g(r) and f(r) needed in the application of the saddle-
point method is the Taylor expansions around that 
point of the steepest path at which re[^_1f(/-)] is a max­
imum. By introducing r = r* + cz, where at ^ z 
^ /3i and c is a complex number with modulus 1 whose 
argument corresponds to the direction on the axis from 
sector i toi i , i.e. 

c = exp 
7Ti l 

arg f"C) 

we can expand 

f(r) = f(r*) + 72f"(r*)c2z2 + • 

When eq 7 is introduced into eq 6, we have 

J = c g(/-*)exp[^-1f(/-*)] f 'exp[1/2fr-
1f"(>"',)c2zl!]dz 

•J on 

(7) 

(8) 

(15) A. Erdelyi, "Asymptotic Expansions," Dover Publications, 
New York, N. Y., 1956, pp 36-39. 

Journal of the American Chemical Society j 90:12 / June 5,1968 



3027 

Laplace's asymptotic method then results in 

J 2^ 
l\{"(r >(r*)\ 

gO^exptfr'ft/*)] (9) 

In the function f(r*), only the real part of the exponent, 
which is always negative, is of interest. The imaginary 
part gives only an unimportant phase factor. Hence, 
we could put for the exponent the absolute value, with 
the negative sign, of the real part of f(r*) which is 

exp[S-1f(>*)] -~ 

r v ^ 
exp z^ re ft 

: i fVl / ( r ) - (E + A)dr-

£ Edr (10) 

The final expression of P(E) in the WKB treatment is 
then 

WKB m
 „ ^ M ^ n L g f l exp[2R->f(r*)] (U) 

fiVE(E+A)\{ (r*)\ 

Since only the real part of f(r*) is of interest, no par­
ticular reference to the complex behavior of r will be 
necessary. From eq 6, r* is the saddle point of g(r)« 
exp^-'fW], b u t n o t o f exp^ f f / ) ] . At small r (near 
the origin) the function g(r) is no longer a slowly vary­
ing coefficient of the exponential part, and it can sig­
nificantly affect the determination of r*. Then, r* 
is the root of f'(r) + fi[g'(r)/g(r)] = 0, where the prime 
signifies the differentiation with respect to r. In the 
region of strong interaction U(r*) » E, while E > 
A; then the leading term of f"(/"*) is 

A J M r U>(r*) 

'). 

The function fir %r*) can be expressed, by perform­
ing a binomial expansion, in the region of strong inter­
action8'16 

e x p e r t / * ) ] ~ 

where 

H(E)= f 

\n\ 

(drjdU) 

VU(r) - E 
= dU 

Since the inverse derivative dr/dU in the region of strong 
interaction takes a general form of 

dr/dU = - X > i £ / -(#+») (12) 

where iV is close to or equal to unity depending on the 
assumed form of U(r) and a's are constant, we have 

CO 

H(E) = - \ / i r £ « « 
T(N + i - 1A) 

El/t - . V - . 

=«, T(N + i) 

The (n — l)st derivative of this function is 

( - l)nAnT(N + i + n - 3/2) 

(13) 

-VirY, 2>< T(N + i) 
(14) 

The full expression of PWKB(E) is now finally, from 
eq 11 and 14 

WKB1 (E) 
4 T T 2 V % 

fiA 
Ht 

£/,/j(r*)F; 

I U'(r*), 
'<Q1 
>i J 

X 

YV2KH _ 
exp —j— Jl L,al-

L fl i = on = l 
IfA" X 

T(N+ i + n - 3/2) 
n\T(N + i) 

£./,. (15) 

where we introduced 

g(r*) = 
F(r*) 

U1^r*) 
-[I + 0(h)] 

and C4 = (wnEl47i2yA and c, = [itp.(E + A)/4^2]V<. 
In the above derivation we did not consider the role 

of the centrifugal potential. We assumed that the 
interaction potential depends only on r but not on its 
orientation; then no torques act to transfer angular 
momentum between the internal motions of the collid­
ing molecules and their relative motion. Every collision 
will then be characterized by the quantum number / 
of the relative angular momentum, which has the same 
value throughout the collision process. Then, we have 

QAr) 

2M \U(r) + KK! + VO' 
2M/-2 

- E 

W + * - ^ ' - ( * + « ; 
When these functions are introduced in the above pro­
cedure, the transition probability will then appear as a 
function of / (i.e., the i sum in eq 15 includes the l-
dependent term). We shall discuss this case below with 
a specific form of U(r). It is thus obvious that eq 15 
is actually the s wave formula. 

We now consider several specific potentials for which 
the exact values of P(E) are known. 

In the region of strong interaction the attractive part 
of U(r*) and F(r*) in the preexponential part is insig­
nificant compared to the repulsive part. The effect of 
this part is, of course, important in determining the 
probability of intermolecular energy transfer, but the 
effect is essentially controlled by the attractive energy 
terms in the exponent of eq 15. The wave functions 
always vary much more rapidly compared to the inter­
action potential itself at small r, and the effect due to the 
attractive force terms in the wave functions directly 
enters in the exponent of P(E), whereas the effect in 
F(r) in eq 1 and in U(r) of the coefficients of the wave 
functions given by eq 2 enters in the preexponential 
part. Therefore, we neglect the attractive parts of 
both U(r*) and F(r*) in eq 15, but not those in the ex­
ponent due to the wave functions.17 Then, for ex­
ample, for both the purely repulsive exponential po­
tential U(r) = D exp( — r/a) and the Morse potential 
U(r) = D[Qxp( — r/2a) — 2 exp(—r/2a)], the preexpo­
nential parts become identical with each other. Now, 
we derive the transition probability for these potentials. 
The distance r* is found to be 

= -2a In {VI '2fi aA 

n 
[1 + 0(K)]\ (16) 

(16) H. Shin, / . Chem. Phys., 42, 59 (1965). (17) H. Shin, ibid., 47, 3302 (1967). 
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The difference in r* for these two potentials appears only 
at the terms of 0(K). By evaluating U(r*) and as­
suming F(r*) = U'(r*), the preexponential part can 
therefore be obtained as (AawtxA/h2)2^j2[l + 0(h)}. 
If we assume the harmonic oscillator wave function 
for the oscillator's vibration, the £y = h/\/2MA, 
where M is the reduced mass of the oscillator, so that 
the preexponential part is 8(A/M)(-Kixa)/h)2 [1 + 0(h)]. 

For the purely repulsive case, N = 1 and the co­
efficient O0 is a, but all other a's are zero; thus, the com­
plete expression for P(E) in the WKB approximation is 

exp 

h2 

y/2/j.awA 

hVE - 1 ^ + 0(E-2) (17) 

P^(E) = 8( | ) f ^ 

The corresponding quantum mechanical result obtained 
by Jackson and Mott is,18 with £w

2 = h2j2MA 

sinh (2?rfci) sinh (2-Kk2) 
h j [cosh (2TTk2) — cosh (2-wki)]2 

(18) 

where Zc1 = a(2/j,E)l/'-/h and k2 = a[2n(E + A)\hjh. 
When we replace the hyperbolic functions by their cor­
responding exponential forms and expand them in a 
power series of AjE for 2wki » 1 and 2wk2 » 1, 
the quantum mechanical result reduces to eq 17. 

For the Morse potential we also find N = 1 but a0 

= a, fli/2 = —ay/D, Qi = 0, flj/j = aD3/2/2, .... 
With these values we obtain, from eq 15 

WKB1 (E) {*^)V X 
•\Z2iu.airA 

e x p < - WE 

-L(P. 
3w\E, 

2 AD H + 
V2 A 

-YE+ 0(£"2) (19) 

Devonshire's quantum mechanical calculation of P(E) 
for this potential with the harmonic oscillator matrix 
element resulted19,20 in 

Pou(E) = 8 ( 1 ) / ^ X 
\ n J 

sinh (Awki) sinh (4-ITk2) 
[cosh (A-Kk2) — cosh (A-Kk1)]

2 A1A2 

(A1 + A2)
2 

(20) 

where A1 = T(-d + 2Jk1^
 1A)!2, A2 = jr( —c/ 

+ 2;'Ar2 + V2);
2, and d = 2a\/2fxD/h. Although it is a 

tedious procedure, it can be shown that when we re­
place the 7 functions by the corresponding exponential 
forms20 and expand them in a power series of A/E 
for A-Kk1 » 1 and A-Kk2 » 1, eq 20 reduces to the 
WKB form given by eq 19. 

The introduction of the centrifugal potential term in 
the exponential potentials considered above leads to 
some mathematical difficulties because the inverse de­
rivative dr/df/ is not possible to obtain in closed form. 

(18) J. M. Jackson and N. F. Mott, Proc. Roy. Sec. (London), A137, 
703 (1932). 

(19) A. F. Devonshire, ibid., A158, 269 (1937). 
(20) Also, see R. T. Allen and P. Feuer, J. Chem. Phys., 40, 2810 

(1964). 

However, for the Lennard-Jones (LJ) potentials, the 
introduction does not lead to such difficulties. Then, 
for the effective potential Ue!f(r) = 4Z)[Or//-)12 - (c//-)6] 
- h\l + V2)VV-2, where £/LJ(cr) = 0, we find N = 
1Vi2 and G0 = (AD)l/"aj\2, av, = -Ia0VD/6, O1 = 
13a0Z)/72, a,/, = (1 1A4)W(Z + 1I2)

2I1Xa(AD)^], a,h = 
665a0D

3/2/\296, .... The transition probability is de­
rived as 

MSOFTX ID) \ A 
HiAx 

exp 
V2-K1X T(VI2) (AD)1^Aa 

h T(V12) £?/» 
X 

1 - Vr(V12)V JD I (A I 
) / l £ 14\Z> 3 72Vr(Vi2); 

.+ 0(E-2) 

_5_ T(V12) V2TT)xhA(l + 1A): 

288 T(1V12) (4D)i/an<rE"'» 
(21) 

where the superscript / refers to the /-dependent term in 
the exponent, and this expression may be called the 
"partial" transition probability; then the "total" 
transition probability is PW K B

t o t a l = 2 , ( 2 / + 1)PWKB '. 
Although use of the Lennard-Jones potential for the 
investigation of molecular energy transfer has been 
made by several authors,21-23 no explicit form of PQM(E) 
needed for the comparison with the WKB result has 
been reported. 

The calculation of P(E) for an inverse-power po­
tential whose leading repulsive term is A/rs with s ^ 2 
requires special consideration, i.e., the potentials which 
fail to vanish more rapidly than I//-2 for large r. The 
reason, of course, is the mixing of the true interaction 
with the centrifugal potential, which does not occur in 
real molecular collisions. For this case, use of the 
binomial expansion applied above to calculate hr 1N/*) 
should be avoided; instead we must directly integrate 
the original form which contains simple integrals, e.g., 
for s = 2 

\ / 2 M 

h i f i-'- ( £ + 4 ) d '-rv^-£ d '} 
where /•* is found to be (2A//j.)i/4(h/Ay/\ These inte­
grals can be easily solved as 

l- In [(£ + A)IE] - 1^(AIAy*2) - I (A/^-*2)2 

where ^* = \jr*, so that the exponential part is 

exp h 
In [EI(E + A)]} = [El(E + A ) ] ^ z 

If we include the centrifugal potential, then in this 
expression A is now replaced by A + h2(l + 1 A ) W 

Assuming the perturbation force F(r) = B/r2 rather 
than U'(r), Widom and Bauer24 obtained the following 
expression for P(E) for U(r) = A/r2 in the distorted 
wave approximation 

(E) = (-f~)(wB)2[EI(E + A)] V2M/A (22) QMA 

(21) T. L. Cottrell and N. Ream, Trans. Faraday Soc, 51, 159 (1955). 
(22) E. E. Nikitin, Opt. i Spektroskopiya, 6, 141 (1959); Opt. Spectry. 

(USSR), 6, 93 (1959). 
(23) H. Shin, / . Chem. Phys., 41, 2864 (1964). 
(24) B. Widom and S. H. Bauer, ibid., 21, 1670 (1953). 
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When we calculate eq 15 with this perturbation force, it 
is easy to show that the WKB treatment yields P(E) 
identical with eq 22, verifying the general conclusion 
concerning the relation of the two theories. The transi­
tion probability for this case is very much different from 
those for the potentials considered above, that P(E) 
for U(r) = A/r2 decreases with the magnitude of the 
change in the oscillator's energy, but as a power rather 
than as the exponential of a power and that there is no 
naturally definable interaction range parameter such as 
a of the exponential potentials. 

There are, of course, other potential functions for 
which such comparison can be made; however, from 
the above results it suffices to conclude that PWKB(E) 
and PQM(E) become identical when E is sufficiently 
larger than A. Therefore, the present analysis and its 
consequent formulas may be found to have at least the 
advantages of simplicity and of generality of method. 
The important steps in the present treatment are to 
formulate r* and to choose an appropriate integration 
path in the saddle-point method for integrals. The 
former step is involved in the evaluation of both ex­
ponential and preexponential parts through U(r*) 
and F(r*), while the latter is only important in the 
evaluation of preexponential part. 

For the one-dimensional case (for which the co­
ordinate may now be represented by x), the exponential 
part of PWKB(E) is identical with that of the three-di­

mensional case, but the preexponential part is some­
what different because the coefficients of Landau's 
wave function \p(x) and Langer's radial function (R(r) 
are different. In Landau's original work, x* is the 
singular point of U(x) and the integration of exp[^_1f(x)] 
is affected along the path which circles x* counterclock­
wise. In the present approach for the one-dimensional 
case, however, we should determine x* from f'(x*) + 
?i[g'(x)/g(x*)] = O= i-e-> t n e saddle point of g(x) exp-
[fir ̂ f(X)], and parameterize the path by x = x* + 
c'z', where z' belongs to the closed interval [at', /3/]. 
Here the primes signify the one-dimensional case. The 
contribution of the integral from a/ to /3 / can then be 
evaluated by application of the Laplace method. Tak­
ing x* to be the singular point of U(x) would leave the 
exponential part of P(E) identical with the present re­
sults in the asymptotic limit, but would make it im­
possible to find the preexponential part. (However, 
the one-dimensional case is trivial, and it is not intended 
to present its solution here.) Any complete theory of 
vibrational transitions due to molecular collision should 
give not only the exponential of P(E), but also the ap­
propriate preexponential part. 
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Abstract: An expression is developed for the temperature dependence of the probability of vibration-translation 
energy transfer in polar molecules assuming the Morse-dipole-quadrupole interaction energy. The development is 
based on a perturbation method which is essentially an extended distorted wave treatment. The angle dependence 
of the interaction between the permanent charges on the collision pairs is explicitly considered by averaging the 
angle-dependent collision integral over all possible rotations of the dipoles. The final expression for the vibrational 
transition probability per collision is obtained as P(T) - /P0(T), where P0(T) is the transition probability that would 
apply in the zero dipole and quadrupole limits and / represents the effect of the permanent charges on the energy 
transfer. It is shown that P(T) can decrease to a minimum and then increase in "a normal fashion" as temperature 
increases for very polar molecules with a small molecular diameter. This anomalous behavior is related to the 
preferred orientation of the colliding molecules at low temperatures (300-6000K). Numerical calculations show 
such behavior in H2O and NH3. In SO2 and CH3Cl the calculation shows a little change in P(T) with T at 300-
5000K. Rotational energy transfer is neglected throughout. 

The temperature dependence of the probability of 
energy transfer P(T) between translational and vi­

brational motions of molecules per collision has been 
discussed theoretically by a number of authors on both 
classical and quantum mechanical grounds.2-4 They 

(1) This work was carried out under Grant AFOSR-68-1354 from 
the U. S. Air Force Office of Scientific Research. 

(2) K. F. Herzfeld and T. A. Litovitz, "Absorption and Dispersion of 
Ultrasonic Waves," Academic Press Inc., New York, N. Y., 1959, 
Chapter 7. 

(3) T. L. Cottrell and J. C. McCoubrey, "Molecular Energy Transfer 
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expressed the temperature dependence by the equation 

P(T) = A(T) exp 3X 
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(1) 

X = [V(m/2) (TraAkT/h)]2 

where A(T) is the preexponential part which is weakly 
temperature dependent, m is the reduced mass of the 
colliding molecules, A is the magnitude of the change in 
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